Central A1-receptor activation associated with onset of torpor protects the heart against low temperature in the Syrian hamster.

نویسندگان

  • Seiji Miyazawa
  • Yasutake Shimizu
  • Takahiko Shiina
  • Haruko Hirayama
  • Hironobu Morita
  • Tadashi Takewaki
چکیده

Body temperature drops dramatically during hibernation, but the heart retains the ability to contract and is resistant to induction of arrhythmia. Although adaptive changes in the heart prior to hibernation may be involved in the cold-resistant property, it remains unclear whether these changes are sufficient for maintaining cardiac pulsatility under an extreme hypothermic condition. We forcibly induced hypothermia in Syrian hamsters by pentobarbital anesthesia combined with cooling of the animals. This allows reproduction of a hypothermic condition in the absence of possible hibernation-specific reactions. Unlike hypothermia in natural hibernation, the forced induction of hypothermia caused atrioventricular block. Furthermore, J-waves, which are typically observed during hypothermia in nonhibernators, were recorded on an ECG. The origin of the J-wave seemed to be related to irreversible injury of the myocardium, because J-waves remained after recovery of body temperature. An abnormal ECG was also found when hypothermia was induced in hamsters that were well adapted to a cold and darkened environment or hamsters that had already experienced hibernation. These results suggest that acclimatization prior to hibernation does not have a crucial effect at least on acquisition of cardiac resistance to low temperature. In contrast, an abnormal ECG was not observed in the case of hypothermia induced by central administration of an adenosine A1-receptor agonist and subsequent cooling, confirming the importance of the adenosine system for inducing hibernation. Our results suggest that some specific mechanisms, which may be driven by a central adenosine system, operate for maintaining the proper cardiac pulsatility under extreme hypothermia.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Membrane Phospholipid Fatty Acid Composition Regulates Cardiac SERCA Activity in a Hibernator, the Syrian Hamster (Mesocricetus auratus)

Polyunsaturated fatty acids (PUFA) have strong effects on hibernation and daily torpor. Increased dietary uptake of PUFA of the n-6 class, particularly of Linoleic acid (LA, C18:2 n-6) lengthens torpor bout duration and enables animals to reach lower body temperatures (T(b)) and metabolic rates. As previously hypothesized, this well-known influence of PUFA may be mediated via effects of the mem...

متن کامل

Reversible remodeling of lung tissue during hibernation in the Syrian hamster.

During hibernation, small rodents such as hamsters cycle through phases of strongly suppressed metabolism with low body temperature (torpor) and full restoration of metabolism and body temperature (arousal). Remarkably, the repetitive stress of cooling-rewarming and hypoxia does not cause irreversible organ damage. To identify adaptive mechanisms protecting the lungs, we assessed histological c...

متن کامل

Hypothermia, torpor and the fundamental importance of understanding the central control of thermoregulation

Activation of central adenosine A1 receptors in the rat, a non-hibernating species, mimics the physiological characteristics of torpor and could thus represent a basis for the development of pharmacological approaches to induce therapeutic hypothermia in pathologies such as brain hemorrhage and ischemia, and to facilitate long-term space travel.

متن کامل

Central activation of the A1 adenosine receptor (A1AR) induces a hypothermic, torpor-like state in the rat.

Since central activation of A1 adenosine receptors (A1ARs) plays an important role in the induction of the hypothermic and hypometabolic torpid state in hibernating mammals, we investigated the potential for the A1AR agonist N6-cyclohexyladenosine to induce a hypothermic, torpor-like state in the (nonhibernating) rat. Core and brown adipose tissue temperatures, EEG, heart rate, and arterial pre...

متن کامل

Determination in vivo of newly synthesized gene expression in hamsters during phases of the hibernation cycle.

This study measured in vivo synthesis of total RNA and protein from cortex, cerebellum and midbrain/brainstem and 6 major organs from Syrian hamsters (Mesocricetus auratus) during (a) 33 h of torpor (body temperature 5-6 degrees C); (b) 90 min of the early arousal; (c) 90 min of the middle arousal; (d) 90 min in cold adapted cenothermic (CEN) hamsters of the same circannual period. Appropriate ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Regulatory, integrative and comparative physiology

دوره 295 3  شماره 

صفحات  -

تاریخ انتشار 2008